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a b s t r a c t

Air quality modeling could potentially improve exposure estimates for use in epidemiological studies.

We investigated this application of air quality modeling by estimating location-specific (point) and

spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic

diameter less than or equal to 2.5 mm (PM2.5) and ozone (O3) for the eastern U.S. in 2002 using the

Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient

monitors. The monitoring approach produced estimates for 370 and 454 counties for PM2.5 and O3,

respectively. Modeled estimates included 1861 counties, covering 50% more population. The population

uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age,

unemployment, income, modeled pollutant levels). CMAQ overestimated O3 (annual normalized mean

bias¼4.30%), while modeled PM2.5 had an annual normalized mean bias of �2.09%, although bias

varied seasonally, from 32% in November to –27% in July. Epidemiology may benefit from air quality

modeling, with improved spatial and temporal resolution and the ability to study populations far from

monitors that may differ from those near monitors. However, model performance varied by measure of

performance, season, and location. Thus, the appropriateness of using such modeled exposures in

health studies depends on the pollutant and metric of concern, acceptable level of uncertainty,

population of interest, study design, and other factors.

& 2012 Elsevier Inc. All rights reserved.
1. Introduction

Exposure estimates in air pollution and health studies are
commonly assessed using data from ambient air quality monitors.
Many places, particularly urban areas, have established monitor-
ing networks with historical, publicly available data. Several
methods for estimating exposures to air pollutants exist, includ-
ing monitor-based approaches such as proximity-based assess-
ments and statistical interpolation, as well as land-use regression
and air quality modeling (Jerrett et al., 2005a). Utilizing data from
existing monitoring networks remains popular, due to cost con-
siderations, data availability, and population coverage.

Most epidemiological studies of air pollution are based in
urban areas, and most monitors for criteria pollutants, such as
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particulate matter with an aerodynamic diameter less than or
equal to 2.5 mm (PM2.5) and ozone (O3), are located in areas with a
high percentage of the population living in urban and suburban
environments (Bell, 2006). Monitoring data may be best at
estimating exposure for populations close to the monitor’s loca-
tion (Sarnat et al., 2006), who are disproportionately in urban
environments, with less spatial coverage for exposure estimation
in rural environments. Characteristics of air pollution (e.g., chemical
components, particle properties) vary spatially (Bell et al., 2007a)
and may differ between areas near and far from monitors.

Ambient monitors offer limited temporal resolution and cover-
age; many do not operate continuously throughout the year.
In the U.S., most PM2.5 monitors record a 24-hour measurement
every three days, with some monitors sampling daily or every six
days. Ozone is usually measured hourly, but only for a portion of
the year (e.g., April–September). Limited spatial and temporal
resolution hinders statistical power and determines the types of
scientific questions that can be investigated, leaving questions
about health effects of cumulative exposures and in rural
environments.

One approach to address these limitations is application of
three-dimensional (3-D) air quality models such as the Community
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Multi-Scale Air Quality (CMAQ) modeling system. CMAQ is a
sophisticated, state-of-the-art, regional air quality model capable
of estimating concentrations of multiple pollutants at local, regio-
nal, or continental scales (Byun and Schere, 2006). CMAQ combines
input from a meteorological model and an emissions model with
simulation of chemical and physical processes to describe pollutant
transformation, transport, and fate (Fig. S1, Supplementary
Material). Output includes gridded estimates of pollutant concen-
trations and deposition fluxes. Compared to approaches relying
exclusively on monitor data, the use of CMAQ results to estimate
exposures offers improved spatial coverage and greater spatial and
temporal resolution.

This study evaluates use of regional air quality modeling
results, using CMAQ as an example, for generating estimates of
exposure to air pollutants, as an alternative or supplement to
monitoring data. The primary objectives of this analysis are to
evaluate limitations and advantages of using CMAQ to estimate
exposure levels. To achieve this we: (1) conducted an evaluation
of CMAQ performance, emphasizing the use of model results for
exposure estimates; (2) compared characteristics of populations
covered and not covered by the monitoring network; and (3) gen-
erated and compared location-specific and spatially-aggregated
exposure estimates using monitoring data and modeling results.
2. Data and methods

2.1. Air pollution data

We used results from a simulation of CMAQ version 4.5.1 covering much of the

eastern U.S. at a 12 km horizontal grid resolution. Initial and boundary conditions

for meteorology and chemistry were extracted from a 36 km simulation con-

ducted by the Visibility State and Tribal Association of the Southeast. Meteorology

was simulated using the Pennsylvania State University/National Center for Atmo-

spheric Research 5th generation mesocscale model version 3.7. The emissions

inventory was based on the 1999 National Emissions Inventory version 2, and was

processed using the Sparse Matrix Operator Kernel Emissions version 2.1. Ground-

level PM2.5 (24-hour average) and O3 (8-hour maximum) concentrations were

simulated for grid cells (12�12 km) for each day in 2002. Each estimate

represents a volume-averaged concentration over the grid cell. Information on

the CMAQ system (Byun and Schere, 2006; Zhang et al., 2006b, 2006c) and

additional details on this specific simulation, including meteorological and

emissions data, are provided elsewhere (Burr and Zhang, 2011; Morris et al.,

2009; Olerud and Sims, 2004; Queen and Zhang, 2008).

Methods for estimating exposure from monitoring data were designed to

emulate those in the epidemiologic literature (Miller et al., 2007; Peng et al., 2008;

Pope et al., 2002; Sarnat et al., 2009). Monitoring data were obtained from the Air

Quality System, which contains data collected by the U.S. Environmental Protec-

tion Agency (EPA), state, local, and tribal air pollution control agencies. Monitoring

data were daily 24-hour average PM2.5 and daily maximum 8-hour O3 levels for

2002, metrics by which PM2.5 and O3 are regulated. Most PM2.5 monitors provide

data every three days, with some sampling every day or every six days. For most

monitors, O3 was measured every day during ‘‘O3 season’’ (typically April–

September). Only Federal Reference Method-compliant PM2.5 monitors and

Federal Equivalence Method-compliant O3 monitors were considered.

We omitted observations the U.S.EPA coded as problematic (e.g., ‘‘lab issues’’).

Of 738 U.S.EPA PM2.5 monitoring sites in the study area (defined as a monitor

within the CMAQ domain or outside the domain but within 100 km of its border),

117 (16%) had multiple monitors. Most sites with co-located monitors had only

two monitors, for a total of 857 monitors in the study area. Of 752 U.S.EPA O3

monitoring sites in the study area, only one had multiple monitors, for a total of

753 O3 monitors. Co-located monitors were treated as repeated measurements,

and averaged for each day.

In the analysis of demographic characteristics of populations in counties with

and without monitors, no monitors were omitted due to data availability. For

exposure analysis, monitors with insufficient data to meet inclusion criteria were

excluded to reflect exposure estimation methods typical of health effects studies.

Inclusion criteria were selected with the purpose of being sufficiently stringent to

avoid over-representation of particular seasons. For PM2.5, inclusion criteria were

developed based on a one-in-three-day sampling frequency. Thus, complete data

for a monitor in 2002 would include 121 days. Monitors with less than 76%

complete data (i.e., fewer than 91 observations) were excluded. To ensure seasonal

representation, the year was divided into 13 periods of 28 days. Monitors were

excluded if they had fewer than 11 (of 13) 28-day periods with at least one
observation per week for three or more weeks in the period. Within the study

area, 218 (25%) of 857 PM2.5 monitors did not meet inclusion criteria.

Inclusion criteria for O3 were based on a daily measurement frequency during

April–September. We included only monitors with a daily 8-hour maximum

reported for a minimum of 75% of days in April through September. Monitors

were also required to have data for at least 50% of days in each month for 5 or

more months of the 6-month O3 season. Within the study area, 729 (97%) of 753

O3 monitors met inclusion criteria for exposure analysis. Fig. S2, Supplementary

Material provides the CMAQ domain and monitor locations.

2.2. Model evaluation: model results vs. monitor data

The CMAQ model has been extensively assessed and updated based on evaluation

results, review panels, and improvements in understanding of modeled processes.

Evaluations indicate CMAQ generally provides reasonable pollution estimates and also

identify specific conditions, locations or processes in which performance could be

improved (Appel et al., 2007; Bailey et al., 2007; Baker and Scheff, 2007; Boylan and

Russell, 2006; Eder et al., 2006; Eder and Yu, 2006; Mueller, 2009; Phillips and

Finkelstein, 2006b; Swall and Davis, 2006; Tesche et al., 2006; Zhang et al., 2006b,

2006c). CMAQ was originally designed for purposes of policy evaluation and assessing

attainment of air quality standards. Thus, previous evaluations were conducted to

assess whether the model adequately performs those functions. Our evaluation was

conducted to identify systematic biases for this specific simulation that could impact

exposure estimates in health studies. Model results in the form of grid cell concentra-

tions were compared with observations at monitors within the grid cell’s boundaries.

Monitoring data used in the model evaluation were equivalent to the monitoring data

used to derive exposure estimates (i.e., subject to the same inclusion/completeness

criteria).

Previous studies compared monitored levels of PM2.5 and O3 to CMAQ

estimates for the eastern, central, and contiguous U.S. (Baker and Scheff, 2007;

Boylan and Russell, 2006; Eder and Yu, 2006; Zhang et al., 2006b, 2006c) using a

number of metrics. The metrics used in this study, such as normalized mean bias

and error and mean fractional bias and error, are frequently used in the model

evaluation literature (Boylan and Russell, 2006; Eder and Yu, 2006; Zhang et al.,

2006a). In addition, we considered correlation, mean bias, and root mean-square

error. For all metrics other than correlation, superior model performance is

indicated by values approaching zero. Formulas and description of metrics are

provided in Table S1, Supplementary Material.

2.3. Population characteristics in relation to monitor locations

We investigated whether demographics of populations in locations with PM2.5

and O3 monitors differ from populations in areas without monitors using a suite of

variables used previously as indicators of socio-economic status, racial composition,

urbanicity, and other factors (Bell and Dominci, 2008; O’Neill et al., 2003b). The

following variables, reported by county and obtained from the 2000 Census for all

counties in the model domain, were utilized: population self-identified as African-

American (Census 2000 Summary File 1, Table P3 [SF1.P3]), population living in

urban settings (Census 2000 Summary File 3, Table P5 [SF3.P5]), population age 65

years and older (SF3.P8), population age 5 years and younger (SF3.P8), population

using public transport (SF3.P30), population age 25 years and older with bachelor’s

degree (SF3.P37), population age 25 years and older with high school diploma

(SF3.P37), population age 16 years and older that is unemployed (SF3.P43), median

household income in 1999 (SF3.P53), and population in poverty (SF3.P87). Counties

were grouped based on whether the county contained a PM2.5 (or O3) monitor.

Inclusion criteria relating to completeness of monitoring data were not applied.

2.4. Exposure estimates

In health studies, air pollution exposure estimates can be based on a

geographic area, (e.g., county, zip code), or on an individual location (e.g., study

subject’s residence). We generated spatially-aggregated and location-specific

exposure estimates using both monitor data and CMAQ simulation results.

Monitoring data represent a specific point, while simulation results are an average

concentration over the grid cell volume. Thus, deriving exposure estimates from

monitoring data and model results required different methods.

2.4.1. Spatially aggregated exposure estimates

We generated exposure estimates at the county level, a spatial unit commonly

used in epidemiological studies (Bell et al., 2004a, 2007b; Dominici et al., 2006;

Holloman et al., 2004; Janes et al., 2007; Pope et al., 2009). County level PM2.5 and

O3 concentrations were estimated using two methods: (1) concentrations from a

monitor or average of monitors located within a county; and (2) an area-weighted

average of 12�12 km gridded CMAQ model results. For monitoring data,

spatially-aggregated exposure estimates were generated only for counties with

monitors and days with observations. Multiple monitor measurements for the

same day and county were averaged. County level exposure estimates for PM2.5

and O3 derived from monitor data were possible only for some days in 2002 and
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for a subset of counties (�25%) within the model domain. County-level averages

based on monitoring data incorporated estimates from all monitors in a given

county, including monitors within 100 km of the study domain in order to account

for counties were partially in and partially out of the study domain. Exposures

based on monitoring data were not estimated for counties without monitors.

Exposure estimates from model outputs were generated for all counties with

more than 98% of county area within the CMAQ domain. County level exposure

estimates were calculated from an area weighted average of CMAQ grid

cell(s) containing any portion of the county. County level exposure estimates

derived from model results are available for all days in 2002 and all 1861 counties

within the model domain.
2.4.2. Location-specific exposure estimates

We also generated location-specific exposure estimates reflecting pollutant con-

centrations at a particular point independent of political boundaries using modeling

results and monitoring data. This is intended to mirror exposure assessment methods

commonly used in epidemiological studies with individual level location information,

such as a cohort study (Brauer et al., 2008; Jerrett et al., 2005b; Ritz et al., 2002). Many

methods to generate location-specific exposures exist (e.g., inverse distance weighting,

kriging). Location-specific exposure fields for PM2.5 and O3 were estimated using two

methods: (1) using monitor data, all locations within the study area were assigned the

concentration level recorded at the nearest monitor location within 50 km and were

not assigned exposures if the nearest monitor was greater than 50 km away; and

(2) using CMAQ results, concentration estimates in the grid cells were designated as

the exposure fields. A distance of 50 km was chosen because it represented a
Fig. 1. Monthly normalized mean bias in simulated concentrations of PM2.5

and O3

Fig. 2. Annual average normalized m
reasonable distance for extrapolation of observed air pollutant concentrations and

has been used previously in epidemiological settings (Hanigan et al., 2006; Lipsett et al.,

2011; O’Donnell et al., 2011; Spencer-Hwang et al., 2011), but other distances could

have been selected with similar justification.
3. Results

3.1. Model evaluation

Overall PM2.5 concentrations, averaged across the study period
and spatial domain for locations and days with both monitoring
and modeled estimates were similar: 13.1 mg/m3 for modeled
concentrations and 13.4 mg/m3 for monitor values. Maximum 8-h
ozone levels were slightly higher for modeled estimates (47.5
parts per billion (ppb)]) relative to measured values (45.0 ppb).
Overall, positive values for annual average bias metrics (normal-
ized mean bias, mean bias) indicate the model overestimates O3

levels (normalized mean bias¼4.30%, mean bias¼2.41 ppb),
while negative values for PM2.5 suggests the model tends to
underestimate observed PM2.5 (normalized mean bias¼�2.09%,
mean bias¼�0.280 mg/m3) (Table S2, Supplementary Material).

To identify seasonal and temporal trends in model performance,
monthly normalized mean bias values were calculated (Fig. 1).
Monthly normalized mean bias for O3 ranged from �2 to 12%
during the O3 season; monthly normalized mean bias is positive for
colder months when many O3 monitors are not operated. Average
monthly normalized mean bias for PM2.5 (range: 730%) demon-
strates a distinct seasonal trend: colder months have a positive bias,
while warmer months show a negative bias. Annual measures of
bias may be low for PM2.5 because seasonal trends in bias ‘‘cancel
out.’’ The mean annual correlation coefficient between simulated
and observed values was 0.640 for PM2.5 and 0.801 O3 (correlation
coefficient during O3 season was 0.755) (Table S3 and Fig. S3 (a) and
(b), Supplementary Material).

We also considered spatial trends in model performance. Annual
average normalized mean bias and correlation were plotted by
monitor location to evaluate whether bias and correlation differed
across the study area (Figs. 2 and 3). Generally, annual average
normalized mean bias for PM2.5 were lowest (e.g., less than 710%) in
the Midwest, western Gulf coast, and northeast. Larger positive biases
ean bias (by monitor location)



Fig. 3. Annual average correlation between observed and simulated concentrations (by monitor location)
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(þ10 to þ30%) were concentrated in the Northeast, western and
northern Midwestern states, and the Texas coast; larger negative
biases (�10 to �30%) were primarily found in the eastern half of the
study area. For O3, higher annual average normalized mean bias
(þ10 to þ30%) values were most prevalent in the Southeast,
particularly in coastal areas. Generally, correlations between mon-
itored and modeled concentrations were higher for O3 compared to
PM2.5. Correlations for PM2.5 tended to be highest (e.g., 0.61–0.80) in
the Northeast and northern Midwest, and lower (e.g., 0.41–0.60) in
parts of the Southeast and Gulf Coast. For O3, correlations were
highest (greater than 0.80) in the upper Southeast, Northeast, and
Ohio River valley; correlations were consistently lower (e.g., 0.61–
0.80) in Florida, the Gulf Coast, and around the Great Lakes.

3.2. Population characteristics for areas with and without monitors

Populations near monitors differed from populations farther
from monitors: counties with monitors tended to have a higher
percentage of individuals living in urban areas than counties with-
out monitors, at 71.2 versus 32.9% urbanicity for PM2.5, and 65.2
compared to 33.6% urbanicity for O3 (Table 1). A larger proportion of
individuals use public transport in counties with monitors. Counties
with monitors had higher indicators of socio-economic conditions
with a higher percentage of college graduates, higher median
income, and a lower percentage of residents in poverty than
counties without monitors. However, counties with PM2.5 or O3

monitors also had a lower percentage of residents with high school
education than counties without monitors. Finally, counties with
monitors exhibited significantly higher modeled levels of PM2.5 and
O3 than counties without monitors (p-value less than 0.05), although
actual differences between modeled annual average concentrations
in counties with and without monitors was �1.5 mg/m3 for PM2.5

and less than 1 ppb for O3.

3.3. Exposure estimates

3.3.1. Spatially aggregated estimates

We generated daily and annual exposure estimates aggregated
at the county level for PM2.5 and O3 using modeling output and
ambient monitors. There are 1861 counties for which more than
98% of the county area falls within the CMAQ model domain. Of
these, 370 and 454 counties contained at least one monitor
meeting inclusion criteria for PM2.5 or O3, respectively.

Table 2 describes county level exposure estimates derived
from monitoring data and simulation results for PM2.5 and O3. The
table provides information on the population covered by the
exposures, the number of observations or simulation results
available, and the land area covered. Exposures are provided as
summary statistics (mean, standard deviation, minimum, and
maximum) of annual average and daily average concentrations.
This table makes comparisons between county level exposure
estimates from monitor data and model results in three ways:
(1) all estimates based on monitoring data (columns 1 and 4);
(2) model estimates for times and locations (counties) with
monitoring estimates (columns 2 and 5); and (3) all estimates
based on modeling results (columns 3 and 6). The first and third
of these summaries use all the monitoring or model simulation
results available and thereby have different sample sizes; how-
ever, the second ensures an identical sample size in terms of
counties and days with data, facilitating comparison of monitor-
and model-derived exposure estimates. Model-derived estimates
provide greater spatial and temporal coverage than monitor-
based estimates. County level monitor-based estimates cover 21.5%
(5.63�105 km2) and 26.0% (6.81�105 km2) of land area included in
CMAQ exposure estimates (study domain �2.65�106 km2) for PM2.5

and O3, respectively. The 2000 population included in the 1861
counties with exposure estimates based on the CMAQ model is
173,675,971. County level exposure estimates based on monitors
included 66.5% (population¼115,494,521) of this total population
for PM2.5 and 67.1% (population¼116,536,577) for O3. Overall,
approximately 23.4% of the population (40,640,177 persons) in the
study area resides in a county without either a PM2.5 or O3 monitor.
For counties with both monitor- and model-derived exposure esti-
mates, 100% of days had data for the modeling approach: on average,
44.4% and 69.8% of days had data for PM2.5 and O3, respectively, using
monitor data (for O3, 97.9% of days between April–September
had data).

Monitor-derived county level annual average PM2.5 and seasonal
average (April–September) O3 concentrations are shown in Figs. 4(a)
and 5(a), respectively. Corresponding model-derived concentrations
are shown in Figs. 4(b) and 5(b). These figures demonstrate
differences in spatial coverage between monitor- and model-based



Table 1
Comparison of population characteristics of counties with and without monitors for PM2.5 or O3.

Median value of census variable (95% Confidence interval)

Counties with monitor(s)(n¼ 412,

population ¼ 121.2�106)

Counties without monitor(s) (n¼ 1449,

population ¼ 52.5�106)

PM2.5

Population Characteristics (% of county population)
Self-identified as blacka

16.3 (14.7, 17.8) 12.9 (12.0, 13.8)
Young children (o5 years)a

7.87 (7.77, 7.96) 7.60 (7.54, 7.65)
Elderly (465 years)a

13.2 (12.8, 13.5) 14.6 (14.4, 14.7)
Urbana

71.2 (68.8, 73.6) 32.9 (31.6, 34.2)
High school diplomaa

32.0 (31.3, 32.6) 37.3 (36.9, 37.6)
Baccalaureate degree a

13.6 (13.1, 14.2) 8.86 (8.65, 9.06)
Unemployeda

3.60 (3.50, 3.70) 3.36 (3.29, 3.43)
Povertya

13.0 (12.5, 13.5) 14.9 (14.5, 15.3)
Use public transporta

2.45 (1.82, 3.07) 0.470 (0.424, 0.516)
Median income ($)a

39,786 (38,820, 40,752) 34,152 (33,699, 34,605)

Pollution exposure estimates
Annual average PM2.5 concentration (monitor, mg/m3) 13.1 (12.9, 13.4) __
Annual average PM2.5 concentration (CMAQ, mg/m3)a

11.6 (10.4, 11.9) 10.2 (10.1, 10.3)

O3

Median Value of Census Variable (95% Confidence Interval)

Counties with monitor(s) (n ¼ 454,

population ¼ 116.5�106)

Counties without monitor(s) (n ¼ 1407,

population ¼ 57.1�106)

Population characteristics (% of county population)
self-identified as black 14.0 (12.6, 15.4) 13.5 (12.6, 14.5)
Young children (o5 years)a

7.91 (7.82, 8.00) 7.58 (7.52, 7.63)
Elderly (465 years)a

13.0 (12.7, 13.4) 14.7 (14.5, 14.9)
Urbana

65.2 (62.6, 67.8) 33.6 (32.3, 35.0)
High school diplomaa

33.1 (32.5, 33.7) 37.0 (36.7, 37.4)
Baccalaureate degree a

13.4 (12.9, 13.9) 8.79 (8.59, 8.99)
Unemployed 3.35 (3.26, 3.45) 3.43 (3.36, 3.50)
Povertya

11.7 (11.2, 12.2) 15.4 (15.0, 15.7)
Use public transporta

1.96 (1.50, 2.42) 0.563 (0.443, 0.683)
Median income ($)a

41,692 (40,709, 42,674) 33,345 (32,933, 33,757)
Pollution exposure estimatesb

Warm season average O3 concentration (monitor,

ppb) 51.9 (51.3, 52.5) __

Warm season average O3 concentration (CMAQ, ppb)a
53.1 (52.4, 54.1) 52.3 (52.0, 52.5)

a Indicates significant differences between groups (counties with and without monitors) at p-valueo0.05.
b O3 pollution exposure estimates are calculated using O3 season data, i.e., April–September, 2002.

Table 2
Comparison of model result and monitor data and county-level exposure estimates for PM2.5 and O3.

PM2.5 O3

Monitor

estimatesa

Model estimates for

locations/times with

monitoring datab

All model

estimatesc

Monitor estimatesa Model estimates for

locations/times with

monitoring datab

All model estimatesc

Number of observations d 73,000 73,000 679,265 116,114 116,114 679,265

Population covered e 115,494,521 115,494,521 173,675,971 116,536,577 116,536,577 173,675,971

Area covered, county-level estimates

(km2)

6.31�105 6.31x105 2.62�106 6.86�10005 6.86�105 2.62�106

Overall annual concentration [mg/m3

for PM2.5, ppb for O3]

Meanþstandard deviation

(minimum to maximum) f

13.1þ2.02

(7.21 to

12.9)

11.6þ2.8

(4.4 to 25.6)

10.3þ2.2

(3.2 to 25.5)

47.2þ6.5 (29.7 to 60.3)

April–Sep. only: 51.9þ6.1

(29.3 to 67.8)

49.3þ5.2 (26.4 to 59.2)

April–Sep. only: 53.1þ4.7

(36.9 to 62.6)

44.5þ2.8 (25.9 to 50.7)

April–Sep. only: 52.4þ4.4

(35.8 to 62.5)

Daily concentration [mg/m3 for PM2.5,

ppb for O3] Meanþstandard

deviation (minimum to maximum) g

13.1þ7.4

(0.1 to 94.5)

11.6þ7.1

(0.04 to 79.4)

10.3þ6.2

(0.003 to

91.3)

47.2þ18.6 (2.0 to 139.0)

April–Sep. only:

51.9þ17.5 (3.0 to 139.0)

49.3þ14.6 (0.140 to 114.3)

April–Sep. only: 53.1þ12.7

(0.140 to 114.4)

44.5þ13.7 (0.130 to 119.6)

April–Sep. only: 52.4þ11.5

(0.130 to 119.6)

a Includes only monitors meeting inclusion criteria as described in Section 2 (i.e., had sufficient data to be used to generate exposure estimates).
b Includes model-derived exposure estimates for counties and times (days) that also have monitor-derived concentration estimates.
c Includes all model-derived exposure estimates, irrespective of whether monitor-derived exposure estimates exist at that location and time.
d Refers to the total number of county-level exposure estimates derived from monitors and/or the total number of county-level exposure estimates derived from

simulation results.
e Represents the population residing in the counties for which exposure estimates were generated, using 2000 Census data.
f Represents the mean and standard deviation of annual average exposure estimates across all counties, and the highest and lowest annual average exposure estimate

for any county.
g Represents the mean and standard deviation of daily average exposure estimates across all counties, and the highest and lowest daily average exposure estimate for

any county.
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Fig. 4. County-level annual average exposure estimates for 24-hour PM2.5 (a) Monitor-derived and (b) model-derived

Fig. 5. County-level seasonal average (April–Sept.) exposure estimates for 8-hour O3: (a) Monitor-derived and (b) model-derived

M.A. Bravo et al. / Environmental Research 116 (2012) 1–106
approaches. For counties with exposure estimates from both
approaches, the annual average maximum 8-hour O3 level was
47.2 ppb for the monitoring approach and 49.3 ppb for the model
approach. During April–September, county level O3 exposure
estimates averaged 51.9 ppb using monitors and were somewhat
higher (53.1 ppb) using modeling results. County level exposure
estimates for PM2.5 were 13.1 mg/m3 using monitor data, and
11.6 mg/m3 using simulation results.
3.3.2. Location-specific estimates

Exposure estimates based on specific points were calculated
using model and monitor data, similar to how such estimates
could be generated for an epidemiological study with information
on individuals’ locations. Location-specific exposure estimates
based on the nearest monitor (within 50 km) results in exposure
estimates for 59.8% (1.57�106 km2) and 63.0% (1.65�106 km2)
of land area included in model-based exposure estimates for
PM2.5 and O3, respectively (Figs. S4 and S5, Supplementary
Material). There are significant differences in spatial and temporal
coverage between model- and monitor-based approaches. For all
locations within the model domain, 100% of days had concentra-
tion estimates using model results: on average, 42.6% and 69.9%
of days had data for PM2.5 and O3, respectively, using monitor
data (for O3, on average 97.4% of days in April–September had
concentration estimates). Typically, epidemiological studies esti-
mating exposures within a certain radius of a given ambient
monitor will use a uniform buffer size around monitor locations
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throughout the study area (Hanigan et al., 2006; Lipsett et al.,
2011; O’Donnell et al., 2011; Spencer-Hwang et al., 2011). Using a
uniform buffer size has potential to introduce exposure misclas-
sification, particularly for large study areas due to differences in
spatial heterogeneity by location. Appropriate buffer size may
vary depending on the pollutant of concern, region within the
U.S., time of year, population density, long-term ambient pollu-
tion concentrations, and other factors (Bell et al., 2011).
4. Discussion

Although reviews of CMAQ performance have identified model
strengths and limitations (Baker and Scheff, 2007; Boylan and
Russell, 2006; Eder and Yu, 2006; Mueller, 2009; Phillips and
Finkelstein, 2006a; Swall and Davis, 2006; Tesche et al., 2006), to
the authors’ knowledge, no previous work considers how CMAQ
performance issues could affect exposure estimates that might be
used in epidemiological studies of air pollution and health. Our
analysis demonstrates that CMAQ performance is different for
PM2.5 and O3, and also depends on the measure used to gauge
performance (e.g., bias, error, correlation), season, the time inter-
val for which each metric is calculated, and location within the
U.S. In the case of PM2.5, long-term averages derived from model
results are similar to those derived from monitor data, but short-
term averages (e.g., daily, monthly) overestimate observed PM2.5

levels during winter and underestimate levels in summer. Annual
O3 levels derived from model results overestimate observed
concentrations, but limited monitoring data were available out-
side of April–September, which hinders assessment of perfor-
mance during other months. During months when O3 levels are
higher, the model may tend to underestimate O3 concentrations,
evidenced by slightly negative normalized mean bias values for
June–September (Fig. 1). In addition, our evaluation of normalized
mean bias and correlation by location (e.g., Figs. 2 and 3) indicates
that annual average normalized mean bias and correlation vary
somewhat by region, with distinct spatial patterns in variation for
PM2.5 and O3.

Traditional exposure assessment using ambient monitors
excludes populations distant from monitors (although definitions
of ‘‘distant’’ vary) (Chen et al., 2007; Jerrett et al., 2004; Sarnat
et al., 2006). Based on our exposure estimates and demographic
data, approximately 58 and 57 million people in the study area
live in counties without PM2.5 and O3 monitors, respectively.
Nearly 41 million people live in counties without either type of
monitor. We found that populations in counties with and without
monitors substantially differed by racial composition, median
income, percent of population that are young children or elderly,
and levels of poverty, employment, and education. Several studies
have indicated that some populations may respond to air pollu-
tion differently (Bell and Dominci, 2008; Evans and Kantrowitz,
2002; O’Neill et al., 2003a). Health effect estimates from specific
locations, representing certain populations, may not be applicable
to the general population (Sarnat et al., 2009). Thus, differences
between populations covered and not covered by the monitoring
network observed in this study may hinder the ability of epide-
miological studies to fully characterize health effects for the
general population or to study how demographic factors affect
susceptibility to air pollution using observations from ambient
monitors. This highlights the need for alternative approaches to
exposure assessment.

Addressing bias and errors in simulation results (as compared
to monitored observations) can be aided by model calibration,
bias correction, and other methods. Studies indicate that bias
correction is a useful tool for improving model forecasts of both
O3 and PM2.5 concentrations (Delle Monache et al., 2006;
Djalalova et al., 2010; McKeen et al., 2005), even across large
study areas (e.g., North America, eastern U.S.). Results of a
comparison of two bias correction approaches (hybrid filter,
Kalman filter) applied to CMAQ simulation results indicate that
these techniques reduced systematic errors in model forecasts,
although residual error from unsystematic and random errors
remained (Kang et al., 2010; Kang et al., 2008). The study also
noted that just as model performance varies across space, the
efficacy of bias correction techniques exhibited spatial variability,
which must be considered with large study areas. Another study
evaluated model performance and compared five different bias
correction approaches using CMAQ simulation results for New
York State and PM2.5 and O3 data from U.S.EPA monitors. Overall,
adjusted simulation results were in closer agreement with
observed ambient concentrations, but improvements gained
through a given bias correction approach tended to differ depend-
ing on pollutant, the metric used to measure overall error or
reduction in error, and the range and magnitude of ambient
concentrations, with some adjustment approaches best at redu-
cing bias at higher observed concentrations (Hogrefe et al., 2006).

While model calibration and bias correction techniques may
be useful in improving model forecasts of observed concentra-
tions, these methods also have limitations. Typically, bias correc-
tion techniques can only be applied to locations with monitoring
data. Further research is needed to develop methods for extend-
ing these techniques to areas without monitoring data. Thus, bias
correction and model calibration techniques are limited in their
ability to address issues such as the lack of data in rural areas,
where there is no monitoring data for calibration, or on days
without monitoring data (e.g., colder months for O3 and days
throughout the year for PM2.5 monitors with one-in-three-day
sampling schedules). One key advantage of using regional air
quality modeling results to estimate exposure is the ability to
estimate exposures and thereby, health effects, in locations and
times without monitoring data. Until exposure estimates can be
improved, one viable approach to address systematic bias in air
quality modeling results is to statistically incorporate the uncer-
tainty into epidemiological analysis.

Furthermore, other efforts are underway to incorporate regio-
nal air quality modeling into exposure estimates, including
development of approaches combining modeled and measured
data (Fuentes and Raftery, 2005; MacMillan et al., 2010). For
example, ‘‘fused’’ data uses spatial-temporal Bayesian hierarchical
modeling that integrates information from monitoring observa-
tions with output from regional air quality models (e.g., CMAQ),
to estimate ground-level air pollution concentrations, and has
been applied to PM2.5 and O3 (Fuentes, 2009). Such statistical
methods are aimed at using multiple types of information to
inform exposure estimates, and also allow researchers to estimate
exposure in areas far from monitors. However, a limitation of
these methods is the introduction of additional uncertainty into
resulting exposure estimates. Different spatial resolutions of
monitoring data compared to modeling output may introduce
bias into pollution or exposure estimates produced by the fused
approach, prior distributions used for different parameters in the
statistical model may differ by location and air pollutant (Fuentes,
2009; Gotway and Young, 2002), and model performance and
accuracy of exposure estimates in locations with little or no
monitoring data is difficult to evaluate.

In addition to fused data, a number of other approaches have
been developed to estimate individual- and population-level expo-
sures, including various interpolation methods (e.g., kriging), land
use regression models, air dispersion and human exposure models,
aerosol measurements obtained from satellites, and source- and
traffic-proximity analysis (Jerrett et al., 2005a; MacMillan et al.,
2010; Nerriere et al., 2005; Paciorek and Liu, 2009; Stein et al., 2007;
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Wong et al., 2004; Zou et al., 2009). Interpolation methods (e.g.,
nearest neighbor, inverse distance weighting, kriging) have been
used to estimate air pollution exposures in previous studies (Cohen
et al., 2009; Finkelstein et al., 2003; Kunzli et al., 2003), but there is
not yet consensus on which methods are most appropriate for
estimating ambient concentrations to assess health effects. The
quality and certainty of estimated exposures are related to the
degree of monitor coverage and spatial heterogeneity of the pollu-
tant within the study area, while the potential for exposure
misclassification persists because estimates are based on ambient
monitoring data and not personal exposure information (Son et al.,
2010; Wong et al., 2004).

Land use regression models utilize information on land use,
population density, traffic volume, distance to pollutant source,
and ambient pollutant concentrations, and may be able to capture
smaller-scale heterogeneity in intra-urban pollutant concentra-
tions (Jerrett et al., 2005a). While this method is transferable to
different locations, data availability (e.g., road, traffic, land cover,
air pollution monitoring) and quality are potentially significant
limitations (Zou et al., 2009). Air dispersion models use informa-
tion on meteorological conditions, temperature, topography, road
type, vehicle speed, emissions, and dispersion processes to esti-
mate pollutant concentration profiles. These models can be
applied to different areas or regions of the study area and over
different spatial scales (Lipfert et al., 2006), and can provide
ambient concentration estimates in locations without dense
monitoring networks. However, assumptions must be made
regarding the chemical and physical transformation of pollutants
and dispersion patterns, model validation is hindered by the
limited spatio-temporal resolution of available monitoring data,
and model simulations may require significant resources in terms
of input data and expertise (Zou et al., 2009).

Exposure and inhalation models using information on ambient
pollutant concentrations, human activity patterns (e.g., time
spent in microenvironments), physiology (e.g., age, sex), and
environmental conditions have also been developed to estimate
exposure and health impacts (Fryer et al., 2006). Human inhala-
tion models can model linkages between adverse health out-
comes and air pollution and estimate exposures for individuals
(Burke et al., 2001; Ozkaynak et al., 2008), but can only be utilized
in areas with time–activity data that estimate amount of time
spent in different microenvironments (McCurdy et al., 2000).

Remote sensing is yet another method with potential to
improve spatial and temporal resolution of measurements of
ambient pollutant concentrations. Aerosol optical depth as mea-
sured by satellites is correlated with ground level PM2.5 concen-
trations in several studies (Koelemeijer et al., 2006; Liu et al.,
2007a, 2007b, 2007c, 2009, 2005; Pelletier et al., 2007). Thus far,
aerosol optical depth measurements from satellites have not been
used extensively as estimates of exposure to PM2.5 in locations
without where there is little PM2.5 monitoring data for validation
(Paciorek and Liu, 2009), although this is an area of active
research and improvements.

Lastly, proximity models operate on the assumption that
exposure at locations proximate to an emissions source are
higher. Utilizing geographic information systems, proximity mod-
els may be useful in reducing likelihood of exposure misclassifi-
cation (Nuckols et al., 2004; Zhan et al., 2006). However,
proximity models do not consider pollutant dispersion or human
time–activity patterns and may be less appropriate for secondary
pollutants and non-traffic related pollutants (Ivy et al., 2008).
Research has also suggested that the basic assumption that closer
proximity to a source means greater exposure may not always be
valid (Cordier et al., 2004).

How CMAQ performance issues affect exposure and health
effect estimates depends on the type of epidemiological study.
Use of model estimates may introduce differential uncertainty in
exposure estimates by season, which is critically important for
studies evaluating daily impacts throughout the year. This issue is
of particular concern for pollutants such as PM2.5, for which
health effect estimates vary by season (Bell et al., 2008). High
correlations between observed and modeled concentrations indi-
cate that modeled and monitored concentrations tend to increase
and decrease in tandem. For time-series and case-crossover
studies assessing short-term exposure (e.g., days) and comparing
risks across time within a given community, the relative differ-
ence between observations and modeled values matched in time
and space may be more important than absolute pollution levels
(Bell et al., 2004b). In other words, over- (or under-) estimation of
pollutant levels by CMAQ may be less problematic for such
studies as long as estimated and observed values co-vary in
similar patterns.

Cohort designs are suitable for measuring short- and long-
term health effects (Kunzli et al., 2001), and compare exposure
levels and health response between different populations or
communities. For these studies, accurate assessment of differ-
ences in pollution/exposure levels between groups being com-
pared is critical. Exposure assessments using air quality modeling
results would be hindered by regional variation in model perfor-
mance, if groups being compared represent different locations
and communities. Variation in model performance across time
could also detrimentally impact exposure estimates for cohort
studies as some parts of the cohort may have better exposure
estimates than others.

Our results indicate key strengths of using 3-D air quality models
to estimate air pollution exposure in health studies including
improvements in spatial and temporal coverage. In this analysis,
use of CMAQ simulation results improves sample size, but also
changes the nature of scientific questions that can be addressed. For
example, daily data is required to perform distributed lag epide-
miological models of how health responds to cumulative exposure
over previous days. Improved spatial coverage allows study of
health effects in rural areas, which may differ with respect to the
air pollution mixture, pollution level, or population characteristics.
These benefits should be weighed against limitations, such as model
performance, the appropriateness of which will depend on epide-
miological study design, and the expertise and information required
to run CMAQ or similar models.

The CMAQ model is updated and improved as the science
advances or if specific issues are identified, and inputs (e.g.,
emissions inventory data) and precursor models are also revised
periodically. The ambient air quality monitoring network also
changes over time, as monitors are added or removed, or new
monitoring techniques are implemented. The frequent changes in
the CMAQ modeling system and input data may affect CMAQ
performance in issues critical to use of model results in epide-
miological studies. Considering results from this analysis, it may
be advisable to conduct a case-specific evaluation of whether a
regional air quality simulation is appropriate to use for a given
exposure assessment or health study. Air quality modeling is an
emerging method for air pollution exposure assessment with
some clear advantages over traditional approaches; evaluation of
strengths and weaknesses ultimately depends on intended appli-
cation of model results, acceptable level of uncertainty, popula-
tion of interest and other factors.
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